Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt

نویسندگان

  • G. M. Yogodzinski
  • P. B. Kelemen
چکیده

An ion probe study of trace elements in Mg-rich clinopyroxene phenocrysts in primitive Aleutian lavas provides constraints on the genesis of Aleutian adakites, and possible insights into the source of common Aleutian magmas. Clinopyroxene (cpx) phenocrysts in the primitive adakites have high Sr and Nd=Yb compared to cpx in Aleutian basalts. In the adakites, Sr and Nd=Yb are highest for high Mg# cpx, and these concentrations decrease toward lower Mg# compositions. These trends are the opposite of those seen in basalt cpx which generally show increasing incompatible trace element contents with decreasing Mg#, and are unlike antithetic compatible–incompatible trace element trends produced by chemical or kinetic effects of crystal growth. Petrographic observations and major and trace element zonation in cpx phenocrysts indicate that primitive Aleutian adakites are in part the product of mixing between primitive and relatively evolved magmas. The adakite trace element signature (high Sr, Nd=Yb) is clearly associated with the primitive mixing end-member. This observation supports the idea that adakites are derived by equilibration of slab melts with mantle olivine, and appears to rule out an origin by melting in the lower crust. Adakites are relatively rare in the Aleutians, but arc-wide correlations between Sr and La=Yb indicates that an adakite-type slab melt component may be present in the magmatic source throughout the arc.  1998 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge

The role of the subducting lithospheric slab in the genesis of mantle-derived (primitive) magmas is investigated through a study of volcanic rocks formed in the tectonically strike-slip–dominated western Aleutian arc. Two types of chemically and petrologically distinctive primitive andesites have been found among the Miocene– late Pleistocene–age volcanic rocks in the western Aleutians. These a...

متن کامل

Chemistry of mafic minerals and thermobarometry of Bazman Quaternary volcanic rocks

  Abstract 1-Introduction Bazman volcano is located on Chgay - Makran magmatic arc. This magmatic arc with east-west trend is 500 km long and 150 km wide and extends from southeastern Iran to southwestern Pakistan. Early evolution of the Makran zone from the upper Oligocene to the upper Miocene is characterized by turbidite sediments deposited on the oceanic crust. There are several quaternary...

متن کامل

Arc Basalt Simulator version 2, a simulation for slab dehydration and fluidfluxed mantle melting for arc basalts: Modeling scheme and application

[1] Convergent margin magmas typically have geochemical signatures that include elevated concentrations of large-ion lithophile elements; depleted heavy rare earth elements and high field strength elements; and variously radiogenic Sr, Pb, and Nd isotopic compositions. These have been attributed to the melting of depleted mantle peridotite by the fluxing of fluids or melts derived from subducti...

متن کامل

Pliocene volcanic activity of the Harrat Ash-Sham, South of Syria: geochemistry and petrogenesis

The Cenozoic volcanic activity of the Harrat Ash Sham volcanic field in south of Syria is a part of the extensive magmatism that took place in the auxiliary extension faults along the Dead Sea Fault Zone from upper Eocene to Holocene. Pliocene volcanic rocks form an important part of igneous succession in Syrian Part of Harrat as Sham. These rocks vary from basalts flows to scoria. Pliocene bas...

متن کامل

سن‌سنجی U-Pb بر بلورهای زیرکن، نسبت‌های ایزوتوپی Sr-Nd و زمین شیمی گنبدهای آداکیتی نئوژن کمان ماگمایی قوچان- اسفراین، شمال شرق ایران

Quchan- Esfarayen magmatic belt (north of Sabzevar) include Neogene adakitic domes with andesite to rhyolite in composition which is cut by Jurasic sedimentary rocks, Eocene volcano-sedimentary rocks, Miocene sedimentary rocks and even occasionally Peliocene conglomerate. The main minerals of these rocks are plagioclase and amphibole with various textures such as felsitic porphyry, microlitic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998